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ABSTRACT
We present a model to treat fully compressible, nonlocal, time-dependent turbulent convection in the

presence of large-scale Ñows and arbitrary density stratiÐcation. The problem is of interest, for example,
in stellar pulsation problems, especially since accurate helioseismological data are now available, as well
as in accretion disks. Owing to the difficulties in formulating an analytical model, it is not surprising that
most of the work has gone into numerical simulations. At present, there are three analytical models : one
by the author, which leads to a rather complicated set of equations ; one by Yoshizawa ; and one by
Xiong. The latter two use a Reynolds stress model together with phenomenological relations with adjust-
able parameters whose determination on the basis of terrestrial Ñows does not guarantee that they may
be extrapolated to astrophysical Ñows. Moreover, all third-order moments representing nonlocality are
taken to be of the down gradient form (which in the case of the planetary boundary layer yields incor-
rect results). In addition, correlations among pressure, temperature, and velocities are often neglected or
treated as in the incompressible case.

To avoid phenomenological relations, we derive the full set of dynamic, time-dependent, nonlocal
equations to describe all mean variables, second- and third-order moments. Closures are carried out at
the fourth order following standard procedures in turbulence modeling. The equations are collected in an
Appendix.

Some of the novelties of the treatment are (1) new Ñux conservation law that includes the large-scale
Ñow, (2) increase of the rate of dissipation of turbulent kinetic energy owing to compressibility and thus
(3) a smaller overshooting, and (4) a new source of mean temperature due to compressibility ; moreover,
contrary to some phenomenological suggestions, the adiabatic temperature gradient depends only on the
thermal pressure, while in the equation for the large-scale Ñow, the physical pressure is the sum of
thermal plus turbulent pressure.
Subject headings : hydrodynamics È turbulence

1. INTRODUCTION

In this paper, we deal with a fully compressible Ñow described by velocity and temperature Ðelds and T , which we take asu
i

u
i
\ u8

i
] u

i
A , T \ T3 ] T A . (1a)

The density o and pressure p, related by a perfect gas equation of state

p \ RoT , (1b)

are split as

p \ p6 ] p@ , o \ o6 ] o@ . (1c)

Here, an overbar and/or angle brackets denote ensemble average. We include body forces (e.g., gravity) and a radiative Ðeld
whose form will be left unspeciÐed. As explained in we use the mass average process to treat the Ðelds u and T . We derive° 2,
the following results :

First-order moments :

1. Dynamical equation for the mean density o6 in terms of the large-scale velocity Ðeld u8 .
2. Dynamical equation for the large-scale Ñow This entails a second-order moment representing the Ñux of the turbulentu8 .

velocity Ðeld, the Reynolds stresses R
ij
.

3. Dynamical equation for the mean temperature Ðeld, This entails a second-order moment representing the Ñux of theT3 .
Ñuctuating temperature Ðeld, the enthalpy, or convective Ñux, H

i
.

Second-order moments :

1. Dynamical equation for the Reynolds stresses, R
ij
\ o6 ~1ou

i
A u

j
A.

2. Dynamical equation for the enthalpy/convective Ñux, H
i
\ o6 ~1c

p
ou

i
A T A.

3. Dynamical equation for the temperature variance, ( \ 12o6 ~1oT A2.
Third-order moments :

The equations for and ( entail third-order moments of the typeR
ij
, H

i
,

R
ijk

\ o6 ~1ou
i
A u

j
A u

k
A , H

ij
4 o6 ~1u

i
A u

j
AT A , (

i
4 o6 ~1ou

i
AT A2 , (1d)
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which are known as di†usion terms since they appear as divergences, and

%
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j
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Lp@
Lx

i
, %

i
h4 T A

Lp@
Lx

i
, (1e)

which represent pressure correlations. Rather than using phenomenological expressions or assuming their incompressible
counterparts, we derive the dynamic, time-dependent equations for equations and The latter, in turn, entail higher(1d) (1e).
order moments
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j
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i
, (1f )

for which we also derive the corresponding dynamic, time-dependent equations.
In addition, compressibility acts as a source of dissipation v, which is now the sum of a solenoidal (incompressible) and a

dillation (compressible) part, and which must be modeled. In addition, we work out the expression for the new variablesv
s

v
d
,

u6
i
A, T A, p@u

i
A, p@d, u

i
A

Dp
Dt

, T A
Dp
Dt

, (1g)

which enter in several of the dynamic equations. The complete set of equations contains only one assumption, that o@, p@, and
oT A satisfy a polytropic relation.

In the we summarize all the relevant equations.Appendix,

2. REYNOLDS AND MASS AVERAGES

As in previous work Canuto Rubesin & Balakrishnan(Lele 1994 ; Favre 1969 ; 1992, 1993, 1994, 1996 ; 1989, 1990 ; Sarkar
& VanOsdol & Sarkar Sarkar et al. pressure and density are1990 ; Taulbee 1991 ; Speziale 1991 ; Sarkar 1992 ; 1989, 1993),

written as

p \ p6 ] p@ , o \ o6 ] o@ , (2a)

with the general rule that a stochastic variable m
m \ m6 ] m@ (2b)

satisÐes the following relations

m6 4 SmT , Sm@T 4 m@\ 0 . (2c)

In the case of compressible turbulence, it is more appropriate to treat the other variables via a ““ mass average ÏÏ process,
whereby

m \ m8 ] mA , (3a)

where

m8 4 MmN \SomT
SoT

, SomAT \ 0 . (3b)

Thus, an overbar and/or angle brackets represent a Reynolds average, while a tilde and/or curly brackets represent a mass
average. We stress that in either case we are dealing with statistical averages (time averages if one adopts the ergodic
hypothesis), in contrast to the volume averages that are used in numerical approaches such as LES, large eddy simulation. As
we have said, the velocity and temperature Ðelds are written as

u
i
\ u8

i
] u

i
A , T \ T3 ] T A . (3c)

With the above deÐnitions, we derive the following relations :

SmAT \ [So@mAT
SoT

, (3d)

So@mAT \ So@m@T , (3e)

SmAT \ SmT [SomT
SoT

4 SmT [ MmN4 SmT [ m8 (3f )

It is important to stress that

SmAT D 0 , Sm@T \ 0 . (3g)

Using an equation of state of the form (R\ 1)

p \ oT , (4a)
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we derive

p6 \ oT \ o6
oT
o6

\ o6 T3 , (4b)

p@\ o@T3 ] oT A . (4c)

With the Reynolds average and we havep \ p6 ] p@, T \T1 ] T @,
p6 \ o6 T1 ] o@T @ , (4d)

p@\ o@T1 ] oT @[ o@T @ , (4e)

which are considerably less intuitive than equations and Applying the above rules, we derive the following relations :(4b) (4c).

Sou
i
AT 4 ou

i
A \ 0 , u8

i
\ Sou

j
T

SoT
, (5a)

Su
i
AT\ [So@u

i
AT

SoT
\ [ So@u

i
@T

SoT
, (5b)

SoT AT 4 oT A \ 0 , T3 \ SoT T
SoT

, (5c)

ST AT \ [So@T AT
SoT

\ [ So@T @T
SoT

. (5d)

For example, from equations with m 4 T and or from and it follows that(3f ) (3d), (5d), (4b) (4d),

T3 \ T1 ]o@T @
o6

\ T1 [ ST AT , (5e)

and thus one may expect that the two types of averages coincide in the incompressible case. for conÐrmsEquation (37b) T A
that expectation. With these premises, we shall consider several basic equations.

3. CONTINUITY EQUATION

Given the general equation governing the density o

do
dt

] o
L

Lx
i
u
i
\ 0 ,

Lo
Lt

] L
Lx

i
(ou

i
)\ 0 ,

d
dt

4
L
Lt

] u
i

L
Lx

i
, (6a)

we obtain, upon averaging,

Lo6
Lt

] L
Lx

j
(o6 u8

j
)\ 0 , (6b)

or alternatively

D
Dt

o6 ] o6
L

Lx
j
u8
j
\ 0 ,

D
Dt

4
L
Lt

] u8
j

L
Lx

j
. (6c)

In the stationary case, expresses conservation of the mass Ñux Subtracting fromequation (6b) o6 u8
j
. equation (6c) equation (6a),

one derives the equation for o@ :

D
Dt

o@ ] o@
L

Lx
j
u8
j
] L

Lx
j
(ou

j
A) \ 0 , (6d)

which can be further transformed into a equation for o@/o6 :

o6
D
Dt

o@
o6

] L
Lx

i
(ou

i
A) \ 0 . (6e)

As expected, taking averages of and making use of and the Ðrst of we obtain anequation (6e) equation (2c) equation (5a),
identity.

4. MOMENTUM EQUATIONS

Consider the Navier-Stokes equations

L
Lt

ou
i
] L

Lx
j
ou

i
u
j
\ F

i
, (7a)
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F
i
4 [ Lp

Lx
i
[ og

i
] F

i
vis , F

i
vis 4 L

Lx
j
p
ij

, (7b, c)

where is the viscous stress tensor deÐned byp
ij

p
ij

\ k
A L
Lx

j
u
i
] L

Lx
i
u
j

B
[ 2

3
k d

ij
L

Lx
k

u
k
. (7d)

Here, k \ lo is the dynamic viscosity. Substituting for and for o, averaging and using the aboveequation (3c) u
i

equation (2a)
relations, we derive the following results.

5. LARGE-SCALE VELOCITY FIELD DYNAMIC EQUATIONSu8 :

Averaging we obtain the dynamic equation for the large-scale Ñowequation (7a), u8 ,

L
Lt

(o6 u8
i
)] L

Lx
j
(o6 u8

i
u8
j
] q

ij
) \ F1

i
(8a)

or

o6
D
Dt

u8
i
\ F1

i
[ L

Lx
j
q
ij

. (8b)

In equations and are the turbulent Reynolds stresses(8a) (8b) q
ij

q
ij
4 ou

i
A u

j
A \ o6 Mu

i
A u

j
AN . (8c)

Since the Ðeld represents the large-scale Ñow, it is justiÐed to assume that it is not a†ected by viscosity, and sou8

F1
i
\ [ L

Lx
i
p6 [ o6 g

i
. (8d)

Thus, Ðnally,

o6
D
Dt

u8
i
\ [ L

Lx
j
(p6 d

ij
] q

ij
) [ o6 g

i
(8e)

6. LARGE-SCALE VELOCITY FIELD STRESSESu8 :

For the large-scale velocity Ðeld the Reynolds stress tensor can be deÐned asu8 ,
t
ij
4 u8

i
u8
j
. (9a)

Multiplying for by and repeating the operation with i and j interchanged, we obtain, upon summing the twoequation (8b) u8
i

u8
jequations,

o6
D
Dt

u8
i
u8
j
\ [ (u8

i
q
jk,k] u8

j
q
ik,k) ] F1

i
u8
j
] F1

j
u8
i
. (9b)

As expected, the space derivatives of the turbulent stresses act as a source of much as the space derivatives of theq
ij

t
ijlarge-scale Ñow (shear) act as a source of Using we further haveq

ij
. equation (8d),

F1
i
u8
j
] F1

j
u8
i
\ [

A Lp6
Lx

k
] o6 g

k

B
(u8

i
d
jk

] u8
j
d
ik
) . (9c)

To solve equations and/or one needs to know the turbulent Reynolds stress will be used in to(8a) (9b), q
ij
. Equation (9b) ° 13

derive the generalized BernoulliÏs equation. However, we must note that the Ðeld is obtained through the solution ofu8
equation (8e).

7. TURBULENT VELOCITY FIELD

Consider written in the equivalent form,equation (7a)

L
Lt

u
i
] u

j
L

Lx
j
u
i
\ o~1F

i
. (10a)

Substitute from and subtract The result is the equation foru
i

equation (3c) equation (8b). u
i
A :

D
Dt

u
i
A ] u

j
A u8

i,j] u
j
A u

i,jA \ o~1F
i
[ (o6 )~1F1

i
] (o6 )~1q

ij,j , (10b)
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which can be compared with the equation for the incompressible case, equation (31) of In writingCanuto (1992). equation
we have employed the notation(10b),

a,j 4 La/Lx
j
; a

i,j 4 La
i
/Lx

j
; a

ij,k 4 La
ij
/Lx

k
. (10c)

As a consistency check, one can work out the equation for the vector Multiply by o@ andq
i
4o@u

i
A. equation (10b) equation

by Adding the results and averaging, one obtains(6d) u
i
A.

D
Dt

q
i
] q

i
u8
j,j ] q

j
u8
i,j ] q

ij,j [ o6 u
j
A u

i,jA \o@
o

F
i
. (10d)

The Ðfth term can be evaluated by averaging Substituting into one obtainsequation (10b). equation (10d),

D
Dt

q
i
] q

i
u8
j,j ] q

j
u8
i,j ] o6

D
Dt

u
i
A ] o6 u

j
A u8

i,j \ 0 , (10e)

which can be rewritten as

D
Dt

(q
i
] o6 u

i
A) ] (q

j
] o6 u

j
A)u8

i,j ] (q
i
] o6 u

i
A)u8

j,j \ 0 , (10f )

where we have eliminated Do6 /Dt via the Ðrst of Sinceequation (6c).

q
i
] o6 u

i
A\ ou

i
A (10g)

is zero in the mass average process, is identically satisÐed.equation (5a), equation (10f )

8. TURBULENT FIELD : REYNOLDS STRESSES

To derive the dynamic equation for the Reynolds stresses we multiply for by and multiply(eq. [8c]), equation (7a) u
i

u
jfor by Adding the two equations, we obtainequation (7a) u

j
u
i
.

L
Lt

(ou
i
u
j
) ] L

Lx
k

(ou
i
u
j
u
k
) \ F

i
u
j
] F

j
u
i
. (11a)

Averaging and making use of the relations

ou
i
u
j
\ o6 u8

i
u8
j
] q

ij
, (11b)

ou
i
u
j
u
k
\ o6 u8

i
u8
j
u8
k
] q

ij
u8
k
] q

jk
u8
i
] q

ik
u8
j
] q

ijk
. (11c)

as well as of we derive the desired dynamic equation for namely,equation (9b), q
ij
,

D
Dt

q
ij
] D

f
\ S

ij
] F

i
u
j
[ F1

i
u8
j
] F

j
u
i
[ F1

j
u8
i
. (11d)

Here, denotes the di†usion ofD
f

q
ij
:

D
f
4

L
Lx

k
q
ijk

, q
ijk

4 ou
i
A u

j
A u

k
A4 o6 R

ijk
. (11e)

The tensor denotes the source of due to the Ðeld that is,S
ij

q
ij

u8 ,
[ S

ij
4 q

ik
u8
j,k ] q

jk
u8
i,k] q

ij
u8
k,k , (11f )

while the last four terms in comprise pressure distribution, density-velocity correlations, and dissipation terms,equation (11d)
which we consider next.

9. PRESSURE AND GRAVITY FORCES

Using equations and we derive(7b) (7c),

F
i
u
j
] F

j
u
i
\ [ (p6 ,k] o6 g

k
)(u8

i
d
jk

] u8
j
d
ik
)[ (d

ik
u
j
A] d

jk
u
i
A)p6 ,k [

A
u
i
A

Lp@
Lx

j
] u

i
A

Lp@
Lx

j

B
] F

i
visu

j
] F

j
visu

i
. (12a)

Since the Ðrst term is just we Ðnally haveequation (9c),

F
i
u
j
] F

j
u
i
[ (F1

i
u8
j
] F1

j
u8
i
) \ B

ij
[ %

ij
] X

ij
, (12b)

where we have deÐned the three tensors

B
ij
4

1
o6

(o@u
j
A d

ik
] o@u

i
A d

jk
)p6 ,k , (12c)
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%
ij
4 u

i
A p,j@ ] u

j
A p,i@ 4 "

ij
] "

ji
, (12d)

X
ij
4 F

i
visu

j
] F

j
visu

i
. (12e)

In writing we have usedB
ij
, equation (5b).

10. VISCOUS TERMS

First, we compute the tensor in Using we Ðrst writeX
ij

equation (12e). equation (7c),

X
ij
\ L

Lx
k
(p

ik
u
j
] p

jk
u
i
)[ v

ij
, (13a)

where the ““ dissipation tensor ÏÏ is deÐned byv
ij

v
ij
\ p

ik
u
j,k ] p

jk
u
i,k . (13b)

The ““ di†usive ÏÏ component of will be included in the di†usion term (see below), while the ““ dissipative ÏÏ componentX
ij

D
ij

v
ijwill be discussed in ° 14.

11. REYNOLDS STRESSES

Putting together equations and becomes(12b), (13a), (13b), equation (11d)

o6
CD
Dt

R
ij
] D

ij

D
\ &

ij
] B

ij
[ n

ij
] d

ij
PD[ v

ij
. (14a)

We have redeÐned the Reynolds stresses, di†usion tensor, source term, and pressure-velocity correlation as follows :

R
ij
4 o6 ~1q

ij
\ o6 ~1ou

i
A u

j
A , (14b)

D
ij
\ o6 ~1 L

Lx
k

C
o6 R

ijk
] 2

3
d
ij
p@u

k
A [ p

ik
u
j
[ p

jk
u
i

D
, (14c)

R
ijk

4 o6 ~1q
ijk

\ o6 ~1ou
i
A u

j
A u

k
A , (14d)

[ &
ij
4 o6 [R

ik
u8
j,k ] R

jk
u8
i,k] , (14e)

n
ij
4 %

ij
[ 13d

ij
%

kk
. (14f )

The pressure-dilatation term PD is deÐned as

PD\ 23p@u
i,iA 4 23p@d , (14g)

where d is the ““ dilatation ÏÏ deÐned as

d \ L
Lx

i
u
i
A4 u

i,iA , (14h)

while and are still given by equations and The physical interpretation of is as follows :B
ij

%
ij

(12c) (12d). equation (14a) &
ijrepresents a source term due to the shear of the large-scale Ñow represents a source due to mass Ñuctuations (see theu8 , B

ijinterpretation as a buoyancy term in the next section), represents the contribution of pressure gradients, while the last two%
ijterms represent dilation e†ects and viscous dissipation. The expressions for PD, and will be given in will beB

ij
, v

ij
° 14, %

ijdiscussed in while the nonlocal, third-order di†usion term will be discussed in° 15, ° 16.

12. TURBULENT KINETIC ENERGY AND TURBULENT PRESSURE

To help understand the physical content of consider the equation for the turbulent kinetic energy K :equation (14a),

K 4 12o6 ~1ou
i
A u

i
A (15a)

Taking the trace of we obtainequation (14a),

o6
CD
Dt

K ] D(K)
D

\ 1
2

&
ii
] 1

2
B

ii
] p@d [ o6 v , (15b)

where D(K) is the di†usion of kinetic energy

D(K)4 o6 ~1 L
Lx

i

C1
2

o6 R
kki

] p@u
i
A [ p

ij
u
j

D
(15c)

and

1
2

B
ii
4 (o6 )~1o@u

i
A

Lp6
Lx

i
. (15d)
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Here, v is the rate of dissipation of kinetic energy (see eq. [27a]),

v
ij
\ 23o6 v d

ij
. (15e)

From with i\ 3, we deÐne a turbulent pressureequation (8c) u3A 4w,

p
t
4 ow2 , P

t
\ o6 ~1p

t
. (16a)

From we haveequation (14a)

o6
CD
Dt

P
t
] D(P

t
)
D

\ &33 ] B33 [ n33 ] 2
3

(p@d [ o6 v) (16b)

with

o6 D(P
t
) \ L

Lx
i

C
o6 R33i]

2
3

p@u
i
A[ 2 p3i u3

D
. (16c)

We note, as a matter of illustration, that if we adopt the Boussinesq approximation (Canuto 1992)

o@ D [ ao6 T A , a D T3 ~1 , o@u
i
AB [ ao6 u

i
AT A , (16d)

and the hydrostatic equilibrium equation

Lp6
Lx

i
\ [ g

i
o6 , (16e)

becomesequation (15d)

1
2

B
ii
\ (o6 )~1o@u

i
A

Lp6
Lx

i
B ao6 g

i
u
i
A T A B ac

p
~1g

i
F

i
c , (16f )

where is the convective Ñux ; see Apart from notational di†erence, this is the source of turbulent kineticF
i
c equation (17b).

energy, equation (60) of Canuto (1992).
Finally, we note that two new dissipation terms appear in that are absent in the incompressible case, that is,equation (14a)

p@d , o6 v
d

, (16g)

since, as we shall discuss in ° 14,

v\ v
S
(incompressible)] v

d
(compressible) . (16h)

It has been estimated from DNS data that the additional sources of dissipation due entirely to compressibility can(eq. [16g])
modify the kinetic energy budget by as much as 25%.

13. TEMPERATURE FIELD

Next, we consider the temperature Ðeld

T \ T3 ] T A , oT \ o6 T3 , oT A \ 0 , (17a)

and derive the dynamic equations for the mean temperature the temperature ÑuxT3 ,
F
i
c \ c

p
oT Au

i
A , H

i
4 o6 ~1F

i
c , (17b)

and the temperature variance (which is related to the potential energy)

t\ 12oT A2 , ( 4 o6 ~1t . (17c)

13.1. Mean Temperature
We begin with the dynamic equation for total energy

h ] 12u2 , (18a)

where is the enthalpy and is the kinetic energy (per unit mass) where u is the velocity Ðeld. Weh \ c
v
T ] p/o 12u24 12u

i
u
ihave

o
d
dt
A
h ] 1

2
u2
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\ Lp
Lt

] L
Lx

j
(p

ij
u
i
) [ og

i
u
i
[ L

Lx
i
F

i
r , (18b)

where represents a radiative Ñux of arbitrary form. Since from Navier-Stokes we haveF
i
r equations (7a),

o
d
dt

1
2

u2 \ [ u
i

Lp
Lx

i
] u

i
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Lx
j
p
ij
[ og

i
u
i
, (18c)
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we subtract from to obtain the equation for the enthalpyequation (18c) equation (18b)

L
Lt

oh ] L
Lx

j
(ohu

j
)\ dp

dt
] p

ij
L

Lx
j
u
i
[ L

Lx
i
F

i
r , (18d)

where we have used the fact that

o
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dt

4 o
ALh
Lt

] u
j

Lh
Lx

j

B
\ L

Lt
oh ] L

Lx
j
(ohu

j
) . (18e)

Next, we average For a perfect gas, we obtainequation (18d). h \ c
v
T ] po~1 \ c

p
T ,

oh \ c
p
o6 T3 , (19a)

ohu
j
\ c

p
(o6 T3 u8

j
] ohAu

j
A) \ c

p
o6 T3 u8

j
] F

j
c , (19b)

dp
dt

\ Dp6
Dt

] u
i
A

Lp6
Lx

i
] u

i
A

Lp@
Lx

i
, (19c)

and from equations and(13b) (15e),

p
ij
u
j,i \ o6 v . (19d)

The dynamic equation for the mean temperature is thenT3
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DT3
Dt

\ [ L
Lx

i
(F

i
c ] F

i
r[ p@u

i
A)] Dp6

Dt
] u

i
A p6 ,i[ p@d ] o6 v . (20a)

Because of the third term in can be written in terms of the tensor of asequation (5b), equation (20a) B
ij

equation (12c)

u
i
A

Lp6
Lx

i
\ [ 1

o6
o@u

i
A

Lp6
Lx

i
\ [ 1

2
B

ii
. (20b)

It is important to stress that in v acts as a source of temperature while it acts as a sink for the turbulentequation (20a),
kinetic energy Because of compressibility acts as a source of mean temperature. Also, the pressure-(eq. [15b]). equation (16h),
dilation e†ects act in opposite ways in the kinetic energy and in the enthalpy The expressionsequation (15b) equation (20a).
for the terms v, and will be given in andu

i
A, p@d °° 14 15.

13.2. Generalized Bernoulli Equation
In this section, we limit our considerations to an inviscid Ñuid. Adding equation to yields(20a) (15b)

Dp6
Dt

\ o6 R
ij
u8
i,j] o6

D
Dt

[c
p
T3 ] K]] L

Lx
i
(F

i
c] F1

i
r ] F

i
ke) , (20c)

where is the Ñux of turbulent kinetic energyF
i
ke

F
i
ke \ 12ou

k
A u

k
A u

i
A . (20d)

Next, we add to both sides of the termequation (20c)

o6
D
Dt

1
2

u8
i
u8
i
4 o6

DK3
Dt

, (20e)

where is the kinetic energy of the large-scale Ñow Using the trace of becomesK3 u8 . equation (9b), equation (20c)

o6
D
Dt

[c
p
T3 ] K ] K3 ]] L

Lx
i
(F

i
c ] F1

i
r ] F

i
ke] o6 R

ij
u8
j
) \ Dp6

Dt
] F1

i
u8
i
. (20f )

Next, we use the form of and recall thatF1
i
, equation (8d),

g
i
o6 u8

i
\ o6 u8

i
LG
Lx

i
\ o6

DG
Dt

, (20g)

since as a rule the gravitational Ðeld G does not depend on time. Thus, becomesequation (20f )

Lp6
Lt

\ o6
D
Dt

(c
p
T3 ] K ] K3 ] G) ] L

Lx
i
(F

i
c ] F1

i
r ] F

i
ke] o6 R

ij
u8
j
) . (20h)

is the generalized BernoulliÏs equation to include turbulence and radiation.Equation (20h)

13.3. New Flux Conservation L aw
In the stationary case, yields the conservation lawequation (20h)

F
i
c ] F1

i
r ] F

i
ke] o6 u8

j
[(c

p
T3 ] K ] K3 ] G)d

ij
] R

ij
]\ constant . (20i)
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What is conserved is the sum of the convective, radiative, turbulent kinetic energy Ñuxes plus the Ñux by the large-scale Ñow of
enthalpy, kinetic energy of both turbulence and large-scale Ñow, gravitational energy, and Reynolds stresses. In stellar
structure studies, is usually written asequation (20i)

F
i
c ] F1

i
r\ constant , (20j)

or, at most, with the inclusion of Fke. It is, however, clear that in pulsation problems, the last terms proportional to cannotu8
be neglected ; we recall that contains not only a time-independent part but also large-scale oscillations, sound waves.u8

13.4. Convective (Enthalpy) Flux, F
i
c\ c

p
ou

i
A T A \o6 H

i
To construct the dynamic equation governing the convective Ñux we begin with written as(eq. [17b]), equation (18d)

c
p

C L
Lt

oT ] L
Lx

j
(ou

j
T )
D

\ dp
dt

] X (21a)

with

X 4 p
ij
u
j,i [ F

i,ir . (21b)

Use of the continuity and p \ RoT , as well as to eliminate the time dependence of T , givesequation (6a) equation (21a)

dp
dt

\ c
A
X [ p

Lu
i

Lx
i

B
[ X , (21c)

which can be considered the dynamic equation for the pressure p. The temperature can thus be written asequation (21a)

L
Lt

oT ] L
Lx

j
(ou

j
T )\ (A, B) , (21d)

where (A, B) means that one can use either A or B, where

A4 c
p
~1
Cdp
dt

] X
D

, B4 c
v
~1
C
[ p

Lu
i

Lx
i
] X

D
. (21e)

Multiplying by and by T and summing, we obtainequation (21d) u
i

equation (7a)

L
Lt

(oTu
i
) ] L

Lx
j
(ou

i
u
j
T ) \ F

i
T ] u

i
(A, B) . (22a)

Next, we average and employ the results :equation (22a)

oTu
i
\ o6 u8

i
T3 ] ou

i
AT A \ o6 u8

i
T3 ] c

p
~1F

i
c , (22b)

ou
i
u
j
T \ o6 u8

i
u8
j
T3 ] T3 q

ij
] c

p
~1u8

k
(d

ik
F
j
c ] d

kj
F

i
c) ] ou

i
A u

j
A T A , (22c)

where is the Reynolds stress, Substitute equations and into the averaged form of equationq
ij

equation (8c). (22b) (22c) (22a)
and make use of The result isequation (8a).

D
Dt

F
i
c ] o6 D

i
\ [ c

p
q
ij

LT3
Lx

j
] C

i
(u8 )] c

p
[F

i
T [ T3 F1

i
] u

i
(A, B)] . (23a)

Here, the contribution of the large-scale ÐeldC
i
(u8 ) u8 :

[ C
i
(u8 ) 4 F

i
c u8

j,j ] F
j
c u8

i,j ] u8
i

A
c
p
o6

DT3
Dt

] L
Lx

j
F

j
c
B

, (23b)

and represents the di†usion of the convective Ñux,D
i

o6 D
i
4 c

p
L

Lx
j
h
ij

, h
ij
4 ou

i
A u

j
A T A 4 o6 H

ij
, (23c)

a third-order moment whose form will be given in Next, we work out the last three terms in Recalling° 16. equation (23a).
that we obtain(p@),i\ 0,

F
i
T [ T3 F1

i
\ [ T A

Lp6
Lx

i
[T A

Lp@
Lx

i
\ [ go6 "

i
T1 A [ %

i
h] T AF

i
vis , (23d)

where

"
i
4 H

p
1
p6

Lp6
Lx

i
, H

p
\ p6

go6
, %

i
h \ T A

Lp@
Lx

i
. (23e)
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is the pressure scale height, and is the pressure-temperature correlation. The expression for ST AT is given below,H
p

%
i
h

Using the deÐnition of A, we deriveequation (37b). equation (21e),

c
p
u
i
A\ (u8

i
] u

i
A)p6 ,t] u

i
A

Lp@
Lt

][u8
i
(u8

j
] u

j
A) ] u8

j
u
i
A ] r

ij
]p6 ,j ] u8

i
u
j
A

Lp@
Lx

j
] u8

j
u
i
A

Lp@
Lx

j
[ u8

i
F

j,jr [ u
i
AF

j,jr ] u
i
A u

j
A

Lp@
Lx

j
]u

i
p
jk

u
k,j ,

(23f )

where

r
ij
4 u

i
A u

j
A \ R

ij
[ mT3 ~1H

ij
. (23g)

Using the deÐnition of and then becomesC
i
(u8 ) equation (20a), equation (23a)

o6
CD
Dt

H
i
] c

p
L

Lx
j
H

ij

D
\ c

p
o6 R

ij
b
j
[ o6 H

j
u8
i,j [ c

p
H

ij

C
o6 ,j ]

A m
c
p
T3
B
p6 ,j
D

[ c
p
[go6 "

i
T A ] %

i
h]

] n
ijk

d
jk

] u
i
A

Dp6
Dt

] u
i
A

Dp@
Dt

[ u
i
A F

j,jr , (24a)

where the higher order tensor

n
ijk

4 u
i
A u

j
A

Lp@
Lx

k

(24b)

will be given below, equations and The superadiabatic temperature gradient is deÐned as° 16, (51g) (51h).

b
i
4 [ LT3

Lx
i
] (o6 c

p
)~1p6 ,i\ [ LT3

Lx
i
] g

c
p

"
i
. (24c)

As one can see, the pressure that enters the deÐnition of b is not the total pressure, p(thermal)] p(tur), as has often been
suggested on phenomenological grounds. Such renormalization occurs only in which, in the absence of aequation (8e),
large-scale Ñow, becomes the hydrostatic equilibrium equation.

As for the viscous terms, the quantity o6 v brought about through cancels exactly, leaving the termsequation (20a) u
i
A p

jk
u
k,jand which we consider smaller than the last term in which represents the rate of dissipation of BothT AF

i
vis, equation (24a) H

i
.

the gradient of the mean temperature and the gradient of the large-scale Ñow (shear) act as sources of The expression forH
i
.

will be given in and The radiation term must be treated in accordance with the chosen modelT A, T Ap,i@ , u
i
A, u

i
ADp@/Dt °° 14 15.

for It is, however, important to stress the role of compressibility. Regardless of the model chosen, we can writeF
i
r.

F
i
r \ F3

i
r ] F

i
rA (24d)

and thus

u
i
AF

j,jr \ u
i
A F3

j,jr ] u
i
A F

j,jrA . (24e)

The Ðrst term is zero in an incompressible treatment, while the second term is nonzero in both treatments since physically it
represents the damping of the convective Ñux owing to radiative processes. If one employs a representation of the type

where is the radiative conductivity)(s 4 c
p
oK

r
, K

r

F
i
r \ [ s

LT
Lx

i
, (24f )

one can write

[ u
i
A F

j,jrA \ 1
2

s
L2
Lx

j
2F

i
c , (24g)

which becomes important when the radiative timescale

qsD l2s~1 (24h)

becomes of the same order as or shorter than the buoyancy timescale. The becomes important for small Pecletterm (24g)
numbers, that is, when convection is inefficient.

13.5. Temperature Variance t4 12oT A2\ o6 (
Using equations and the equation for oT 2 is(21d) (7a),

L
Lt

oT 2] L
Lx

j
(oT 2u

j
) \ 2T (A, B) . (25a)

Averaging and using the fact that

oT 2\ o6 T3 2 ] oT A2 , (25b)
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oT 2u
j
\ o6 u8

j
T3 2] u8

j
oT A2] ou

j
A T A2] 2T3 c

p
~1F

j
c , (25c)

we obtain the equation for t

D
Dt

t] D
f
\ [ u8

i,i t[ c
p
~1F

i
c
LT3
Lx

i
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p
~1T3

A
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p
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] L
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F
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] T (A, B) , (26a)

where the di†usion is deÐned asD
f

D
f
4

1
2

L
Lx

i
t

i
, t

i
4 ou

i
AT A2\ o6 (

i
(26b)

Using the Ðrst of equations and becomes(21e) (20a), equation (26a)

c
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t] D
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T3 ,i] T1 A
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since

u
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A T Ap,i\ uAT
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B
o6 "

i
H

i
] 1

2
%

ii
h , (26d)

where
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T
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i

U
(26e)

is a pressure-velocity-temperature correlation that will be studied in Using the second of we Ðnally obtain° 16. equation (26b),

c
p
o6
AD(

Dt
] o6 ~1D

f

B
\ o6 H

i
b
i
] 1

2
%

ii
h ] T1 A

Dp6
Dt

] T A
Dp@
Dt

[ T AF
i,ir . (26f )

As expected on physical grounds, the large-scale Ñow does not act directly as source of temperature variance while theu8
temperature gradient does.

14. CLOSURES

14.1. Compressible Dissipation : Two Models
Since dissipation by molecular forces occurs at the smallest scales that are nearly isotropic, it has been a standard

approximation to assume that is of the form,v
ij

v
ij
\ 23o6 v d

ij
. (27a)

Using we obtainequation (13b),

o6 v\ p
ij
u
i,j . (27b)

Using the deÐnition of one obtains after several steps, the following exact result :p
ij
, equation (7d),

o6 v\ k
C
u

i
A u

i
A] 4

3
d2
D

] 2k
L

Lx
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C L
Lx

i
u
i
A u

j
A [ 2 du

j
A
D

, (27c)

where the vorticity being the Levi-Civita tensor. At this point, it is usually assumed thatu
i
A \ v

ijk
u

jk
A , 2u

ij
A 4 u

i,jA [ u
j,iA , v

ijkowing to the homogeneity of the small scales, the last two terms can be neglected in comparison with the Ðrst two terms.
However, this is not a required approximation, since one can think of including the last two terms in the di†usion term. The
important fact is that, contrary to the incompressible case, the dissipation v is now contributed by two terms, a solenoidal
(incompressible) and a dilation (compressible) component et al. Zeman(Sarkar 1989 ; 1990, 1991) :

v\ v
s
] v

d
, v

s
\ lu

i
A u

i
A , v

d
\ 43l d2 . (27d)

We present two models :

1. In this model, v is treated as a single variable satisfying a dynamic equation that is an extension of the incompressible
case The suggested equation is(Canuto 1992).

Dv
Dt

] D
f
(v)\ [Cv1 vK~1R
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i,j [ Cv2 v2K~1 ] Cv4m(1[ c~1)H

p
~1vK~1H
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] Cv3o6 ~1vK~1p@d [ vu8

i,i , (28a)

where K is the turbulent kinetic energy, andequation (15a),

[ o6 D
f
(v) \ L

Lx
j

C
Cv o6 Kv~1R

ij
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Lx

i

D
. (28b)
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We also recall the identity

o6
DA
Dt

\ L
Lt

(o6 A) ] L
Lx

j
(o6 Au8

j
) . (28c)

If we compare with equation (46) of we see that the Ðrst three terms were already present in theequation (28a) Canuto (1992),
incompressible case, the term being the source of dissipation due to buoyancy. Because of m\ 0 and the term isCv4 "

i
\ 0,

positive in the region of unstable stratiÐcation. The last two terms in are due to compressibility.equation (28a)
2. In this model and are modeled independently. First, is taken to satisfy a di†erential equation similar to the one inv

s
v
d

v
sthe incompressible case, to wit,

Dv
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] D
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s
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The form of the di†usion is the same as with For we writeD
f
(v

s
) equation (28b) v] v

s
. v

d
,

v
d
\ v

s
F(M) , M2\ 2K

cRT
\ 2Kc

s
~2 , (28e)

where M is the Mach number and is the speed of sound et al. have suggested withc
s

(\ cp6 /o6 )1@2. Sarkar (1989) F(M)\ a1M2,
of order unity, while has suggested a slightly more complex expression :a1 Zeman (1990)

F(M) \ 1 [ exp M[ [(M [ 0.1)/0.6]2N , M [ 0.1 F\ 0 , M \ 0.1 . (28f )

The constants are and et al.Cv4 \ 1.44, Cv2 \ 1.83, Cv3 \ 0.15, Cv4 \ 0.1 (Sarkar 1989).

14.2. Pressure-Dilatation and Dilatational-Dissipation Old and New Modelsp@d, v
d
:

et al. have suggested the closure1. Sarkar (1993)

p@d \ 15o6 M2[a3 v
s
] a2R

ij
u8
i,j] (29a)

with of order unity. Thus, usinga2,3 equation (28e),

p@d [ o6 v
d
\ [ [15 (5a1[ a3)vs[ 15a2R

ij
u8
i,j]o6 M2 . (29b)

has suggested a model valid for M ¹ 1, whereby2. Zeman (1991)

p@d \ [ 1
2

(o6 c
s
2)~1 D

Dt
p@2 , (29c)

D
Dt

p@2 \ [ q
a
~1(p@2[ p

e
2) , (29d)

where the acoustic timescale and the equilibrium pressure are given byq
a

p
e

q
a
\ qM[54(1] 13M2)]~1@2 , q4 2Kv

s
~1 , (29e)

p
e
\ 2oK/1@2(M) , (29f )

/(M) 4
1 ] 2M2

1 ] M2] 2M4 . (29g)

The acoustic timescale is deÐned as where c is the propagation of speed of density or pressure Ñuctuations givenq
a

q
a
\ L /c,

by (Chandrasekhar 1951)

c\ 21@2c
s
(1 ] 13M2)1@2 . (30a)

Since the turbulent timescale q is deÐned as and the Ðrst of follows. The function /q\ 2Kv
s
~1 v

s
D K3@2L~1, equation (29e)

was constructed using two ingredients : (1) the ratio of compressible to solenoidal kinetic energies K(c)/K(s) can be written as
the sum of two known behaviors (Sarkar et al. Zeman DM for M \ 1 and DM4 for M B O(1), so1989, 1993 ; 1990, 1991) :
that

K(c)
K(s)

\ M2(1 ] 2M2) ; (30b)

and (2) the ratio between compressible potential and kinetic energies is in equilibrium

A p
e

oc
s

B2
B 2K(c) . (30c)

With K \ K(c) ] K(s), follows. We may also note that implies thatequation (29f ) equation (29f )

p
e
2

p6 2\ c2M4/(M) . (30d)
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The novel physical feature of the model is that in order to solve one needs to know the initial pressure Thisequation (29d) p0.is distinct from the incompressible case in which the time development of the turbulence is governed only by the initial values
of the energy and dissipation rates. Direct numerical simulation, DNS Lele, & Moin & Pouquet(Lele 1994 ; Lee, 1992 ; Passot

Coleman, & Bradshaw et al. Coleman, & Mansour has shown that in the1987 ; Huang, 1995 ; Muthsam 1995 ; Cambon, 1992),
case of compressible turbulence, this is not the case and that for an initial Mach number, the evolution of a turbulent state
depends on the level of initial pressure (density) Ñuctuations as well as on the ratio of compressible to total kinetic energy.

3. The third model relies on the fact that using Poisson equation one can show that and are related by &p@d v
d

(Taulbee
VanOsdol 1991)

p@d [ o6 v
d
\ [ o6 v

s
M~2[C0M(qu8

k,k)2[ C1(qu8 k,k) ] C2]! , (31a)

where

!\ o6 ~2o@2 (31b)

and and To complete the model, one needs an equation for !. Previous authors (RubesinC0 \ 1, C1\ 12, C2\ 23. 1989, 1990)
have suggested the closure where is deÐned in Using a polytrope, we haveT A \Au

i
A b

i
, b

i
equation (24c). equation (35a),

!\ m2A2T3 ~2R
ij
b
i
b
j
. (32)

From dimensional considerations, A must be of the form where is a timescale. We suggest two choices,A\ cv q*, q
*

q
*

\ q
and see A value is also suggested.q

*
\ q

a
; equation (29e). cv \ 13

14.3. New Model for andp@2 v
d

We begin by deriving a dynamic equation for To that end, we use written for p@ via the second ofp@2. equation (6d) equation
multiply the result by p@, and average. We obtain(35b),
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where
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Next, we have
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and
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We approximate the last term as follows :
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where was deÐned in and its dynamical equation is given by equations and Thus,(
i

equation (26b), (62a) (62b).
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The second term in is given byequation (33c)
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where is deÐned in and it will be given in Finally, if we take o ] o6 in the last term, we obtain%
ij

equation (12d) ° 15.

ou
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ii
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where was deÐned in Finally, the equation for Sp@2T is given by%
ij
h equation (26e).
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The expressions for and are given by equations and Equations and can thus be combined top@u
i
A p@d (35c) (45c). (33i) (31a)

yield the new equation for v
d
.
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14.4. Compressible Terms : u
i
A, p@u

i
A, o@u

i
A, T A

To compute these compressibility terms, we begin with the general thermodynamic relations for a polytrope :

dQ\ cdT , T ~1 dT \ (n [ 1)o~1 do , dS \ c
v
(n [ c)o~1 do , (34a)

n \ 1 ] m~1\ (c
p
[ c)(c

v
[ c)~1 . (34b)

The polytropic index m is treated as a free parameter. We recall that

adiabatic : c\ 0, n \ c, m\ (c[ 1)~1 isothermal : c\ O, n \ 1, m\ O . (34c)

From we deriveequation (34a)
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s
2 oT A , (35b)

where Using the Ðrst of we derive the following relations :a \T3 ~1. equation (5b),

u
i
A \ [ o6 ~1o@u

i
A \ [m(c

p
T3 )~1H

i
\ [m(c[ 1)c

s
~2H

i
, p@u

i
A\ nm(1 [ c~1)o6 H

i
. (35c)

are consistent with multiplied by and then averaged. The tensor deÐned byEquations (35c) equation (4c) u
i
A B

ij
, equation (12c)

and which acts as a source of Reynolds stresses, can thus be constructed in terms of known variables. We haveequation (14a),

B
ij
\ m(c[ 1)c

s
~2(d

ik
H

j
] d

jk
H

i
)p6 ,k\ m(1 [ c~1)o6 H

p
~1(d

ik
H

j
] d

jk
H

i
)"

k
, (36a)

which makes easier to compare with the incompressible case. Since in a region of unstable stratiÐcationequation (14a) H
i
[ 0,

must be positive, and since it follows thatB
ij

"
k
\ 0, equation (23e),

m\ 0 , n \ 1 (36b)

which implies that the Ñuctuations cannot be isothermal and/or adiabatic. We may further note that all previous incompress-
ible treatments correspond to the case n \ 0, m\ [ 1.

Next, we consider the terms that appears in the convective Ñux Since by deÐnitionT A equation (24a).

T A \ [ o6 ~1o@T A , (37a)

use of the second relation in givesequation (35a)

T A \ [m(o6 T3 )~1SoT A2T \ [ 2mT3 ~1( \ [ 2mc
p
(c[ 1)c

s
~2( , (37b)

where ( is given by solving Since m\ 0, it follows that is the extension of the secondequation (26f ). T1 A [ 0. Equation (37b)
term on the right-hand side of equation (57) of to the compressible case.Canuto (1992)

14.5. Dilatation
From we obtain the dilatationequation (35c),

d6 \ L
Lx

i
u6
i
A\ [m(c[ 1)

L
Lx

i
(c

s
~2H

i
) , (37c)

which relates the divergence of the mass average turbulent velocity to the divergence of the ratio of the convective Ñux tou
i
A

the square of the sound speed.

15. PRESSURE CORRELATIONS TERMS

15.1. Temperature-Pressure Correlation
The third-order moment

%
i
h 4 T A

Lp@
Lx

i
, (38a)

which enters the equation for the convective Ñux, will be written asequation (24a),

%
i
h \ o6 ~1

T
oT A

Lp@
Lx

i

U
(38b)

Substituting oT A from we obtainequation (35a),

o6 %
i
h\ (2nm)~1cT3 c

s
~2 L

Lx
i
p@2 , (38c)

where is given byp@2 equation (33i).
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15.2. Pressure-Velocity Correlation Tensor %
ij

The tensor (eq. [12d])

%
ij
\ u

i
A p,j@ ] u

j
A p,i@ 4 "

ij
] "

ji
(39)

is one of the most difficult statistics to compute. In compressible turbulence, it has been general practice to adopt the same
expression as in the incompressible case, that is & Sarkar Canuto(Speziale 1991 ; 1992, 1993)

o6 ~1%
ij
\ 2c4 q~1b

ij
] (1 [ b5)o6 ~1B

ij
[ 45K(S

ij
[ 13 d

ij
S
kk
) [ a1[bik

S
jk

] b
jk

S
ik

[ 23 d
ij
S
pq

b
pq

][ a2(bik
V
jk

] b
jk

V
ik
) , (40a)

where is deÐned by Furthermore,B
ij

equation (12c).

b
ij
\ R

ij
[ 23 d

ij
K , 2S

ij
\ u8

i,j ] u8
j,i , 2V

ij
\ u8

i,j [ u8
j,i . (40b)

The constants and can be found in the above references.c4, a1,2 b5Since we have no way of assessing the reliability of as a representation of in the case of strong densityequation (40a) %
ijstratiÐcation, we work out a new expression that we derive using the basic equations obtained before. Take the time derivative

D/Dt of and considerequation (39)

D
Dt

"
ij
\
TAD

Dt
u
i
A
B Lp@

Lx
j

U
]
T

u
i
A

L
Lx

j

Dp@
Dt
U

. (41a)

As for the Ðrst term, we make use of to eliminate and obtainequation (10b) Du
i
A/Dt

TAD
Dt

u
i
A
B Lp@

Lx
j

U
\ [ u8

i,k "
kj

[
T1

o
Lp
Lx

i

Lp@
Lx

j

U
, (41b)

where we have neglected the fourth-order term

T
u
k
A

L
Lx

k
u
i
A

Lp@
Lx

j

U

on the grounds that it represents the product of three functions and p@ that peak at very low wavenumbers, while theu
k
A, u

i
A,

integrand weighs more at large kÏs because of the k2 factor, thus implying possibly a small overlap. Expanding the density as

o~1\ o6 ~1
A
1 [ o@

o6
] É É É

B
(41c)

and using the pressure scale height and deÐned in we obtainH
p

"
i

equation (23e),

T1
o

Lp
Lx

i

Lp@
Lx
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U
\ o6 ~1

CTA
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B Lp@

Lx
i

Lp@
Lx

j

U
[ 1

2n
H

p
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i
L

Lx
j
p@2
D

. (41d)

In the Ðrst term, we neglect o@/o6 versus unity and take

L
i
L
j
p@2\ 2 L

i
p@ L

j
p@] 2p@ L

ij
2 p@B 2 L

i
p@ L

j
p@ (41e)

since the term we neglect is the product of two functions, one of which (p@) peaks at low wavenumbers while the other
peaks at large wavenumbers, thus implying a small overlap. Thus, becomes(L

ij
2 p@D k2p@) equation (41b)

TAD
Dt

u
i
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B Lp@

Lx
j
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i,k "
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C L2p@2
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j
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n
H

p
~1"

i
L

Lx
j
p@2
D

. (42)

Since is solution of the right-hand side of is considered known. Next, we consider the secondp@2 equation (33i), equation (42)
term in equation (41a),

T
u
i
A

L
Lx

j

Dp@
Dt
U

. (43a)

First, we employ the second of and subsequently to compute Dp@/Dt. We obtainequation (35b) equation (6d)

c
n
T

u
i
A

L
Lx

j

Dp@
Dt
U

\ /,j uiA o@ ] /A
ij
[ B

i
L

Lx
j
c
s
2 , (43b)

where

/4 c
s
2' (43c)

A
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A

Lo@
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U
, B

i
4
T

u
i
A

L
Lx

k
ou

k
A
U

. (43d)
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In deriving we have made use of an argument similar to the previous one and have neglected a term whoseequation (43b)
components have a small overlap. is evaluated using the second of with the resultA

ij
equation (35b)

A
ij

\ c
n

c
s
~2
C
"

ij
[ u

i
A p@c
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~2 L

Lx
j
c
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. (44a)

As for we Ðrst write it asB
i
,

B
i
\ L

Lx
k

(ou
i
A u

k
A)[

T
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k
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Lu
i
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Lx
k

U
\ Lq
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k
[
T
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Lu
i
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Lx
k

U
. (44b)

At this point, we make the reasonable approximation that the largest contribution to the last term is obtained by taking
o ] o6 . The term that remains under the average can then be evaluated by averaging which gives the exactequation (10b),
result

T
u
k
A

Lu
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k
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u
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A [ u8

i,k u
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A ] (2np6 o6 )~1 L
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Substituting into we obtainequation (44b),

B
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i
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. (44d)

Collecting the results, becomesequation (43b)
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Using equations and then becomes(42) (44e), equation (41a)
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where

a
i
4 c

s
~2 L

Lx
i
p@2 . (45b)

Once is known, the pressure-velocity correlation tensor is also known, and so is the pressure-"
ij

%
ij

equation (39),
dilation term since

p@d \ L
Lx

i
(p@u

i
A)[ 1

2
%

ii
, (45c)

where is given byp@u
i
A equation (35c).

15.3. T he Terms and ST A(Dp@/Dt)TSu
i
A(Dp@/Dt)T

These two terms appear in the dynamic equation for the convective Ñuxes, and in the temperature variance,equation (24a),
To compute the Ðrst term, we employ to write p@ in terms of o@, for Do@/Dt as wellequation (26f ). equation (35b) equation (6d)

as the deÐnition We obtain(eq. [33b]).

u
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c
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i
A o@ [ B

i
] , (46a)

where is deÐned in and is given by As for the second quantity, we use the same procedure toB
i

equation (43d) equation (44d).
obtain
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. (46b)

To treat the last term in we Ðrst approximate it asequation (46b),

T A
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j
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j
A B o6 ~1oT A

L
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j
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A (46c)

and then use the second expression for p@ of The resulting expression is the same as that inequation (35b). equation (33c).
Thus, Ðnally,
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16. NONLOCALITY. DIFFUSION, THIRD-ORDER MOMENTS

To account for nonlocality, we have to compute the three di†usion terms entering equations (14a), (14d), (24a), (23c), (26a),
and that is, the third-order moments,(26b),

q
ijk

4 ou
i
A u

j
A u

k
A , q

ijk
\ o6 R

ijk
(47a)

h
ij
4 ou

i
A u

j
AT A , h

ij
\ o6 H

ij
(47b)

t
i
4 ou

i
A T A2 , t

i
\ o6 (

i
(47c)

j 4 So@3T , j 4 o6 3p . (47d)

The last third-order moment will be shown to be implied by the equation for t
i
.

16.1. T he Tensor q
ijk
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k
A \ o6 R
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To derive the dynamic equation for this variable, we multiply by and by Summing theequation (7a) u
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k

equation (11a) u
k
.

results and rearranging, we obtain
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We have averaged and derived an equation for However, the Ðnal form is not very transparent. Thus, weequation (48a) R
ijk

.
have decided to follow another route. We take the D/Dt of Eliminating the Do/Dt term via we obtainq

ijk
. equation (6a),
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where perm. indicates that one must add two more terms with running indices jki and kij. We also recall that InSAT 4A1 .
each of the three terms in the square brackets, we substitute We obtainequation (10b).
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Here, perm. means the addition of two terms with the indices ijk permuted (the dummy index m is unchanged). The last two
terms in are given byequation (49b)
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Let us compute the last term. We have
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Next, we substitute the deÐnition of equations and and neglect the viscous term. We deriveF
i
, (7a) (7b)
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where
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Finally, we employ the second relation in to rewrite the last term in asequation (35a) equation (49f )
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where we have used the Substituting into and then intodeÐnition (47b). equation (49h) equation (49f) equation (49d), equation
becomes(49a)
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where

%
ijk

\ n
ijk

] perm. (50b)

Using equations and the tensor(47a), (47b),
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as well as becomesequation (6c), (50a)
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Next, it has been known for many years that one cannot assume that the fourth-order moments are Gaussian distributed :
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(50e)

with zero cumulant

C
ijkm

\ 0 , (50f )

since that leads to negative energies. The pragmatic solution adopted in all treatments is to make sure that there is no
accumulation of the third-order moments by assuming that the e†ect of nonzero cumulant is represented by a dampingC

ijkmtimescale q. Thus, becomesequation (50d)
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Finally, we have to work out an expression for the pressure term In all incompressible treatments, this term is not%
ijk

.
actually computed ; rather, it is assumed phenomenologically that it entails a relaxation process with a timescale q, that is,

%
ijk

D [ q~1R
ijk

. (50h)

There is little justiÐcation for such an assumption in the case of compressible turbulence not ultimately because it is not at all
obvious which timescale to use since we have

q, q
a

and q
s
4 (U

i,j Uj,i)~1@2 , (50i)

where the Ðrst two qÏs have already been deÐned.
We shall proceed in the following way. First, we use to writeequation (35a)
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In the Ðrst term we shall take o ] o6 , and so
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Since

L
Lx

k
h
ij
\
T

T A
L

Lx
k

ou
i
A u

j
A
U

]
T

ou
i
A u

j
A

LT A
Lx

k

U
, (51c)

we further have
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Finally, by approximating the last term, we have
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An alternative expression derivable from isequation (51b)
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Expressions and can be rewritten as(51e) (51f )
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can be compared term by term with the analogous equation for the fully incompressible case equation (55a) ofEquation (50f )
(Canuto 1992).

16.2. T he Tensor h
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To derive the dynamic equation for this tensor, we can follow two procedures. We can multiply by T andequation (11a)
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Next, we average We have carried out this process only to end up with an equation that is quite cumbersomeequation (52a).
and, more to the point, rather difficult to interpret physically. We thus decided to use a di†erent approach. We begin by
writing
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From it follows thatequation (10b)
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Thus, we obtain
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Next, we work out the last two terms in Using the deÐnitions of and that of equations and butequation (53d). c
i
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i
, (7b) (7c)

neglecting the viscous terms, we obtain
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In the curly brackets, the two largest terms give
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Thus, writing o@ as from we obtainequation (35a),
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where the pressure-temperature correlation tensor is deÐned as
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and is deÐned in The tensor cannot be further reduced. Next, consider and in particulart
i

equation (47c). A
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where we have used equations and then We recall that ' is deÐned in Thus,(35a) (6d). equation (33b).
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In we add to both sides the divergenceequation (53a)
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and consider the combination
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where the second term comes from while the last term comes from We haveA
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, equation (53d), B
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, equation (54b).
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Next, using we write the Ðrst term asequation (23g),
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In the second term in we substitute o \ o6 ] o@. Using to write we deriveequation (55b), equation (5b) So@u
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which Ðnally gives
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The dynamic for then becomesequation (53a) h
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where the di†usion term is deÐned by asequation (54c)
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Next, we approximate the fourth-order moment as before, namely
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where the cumulant C is nonzero. then becomesEquation (56a)
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To simplify further, we use equations and and obtainequation (57b) (47b) (47c)
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can now be compared directly with the incompressible case, equation (55b) of As in theEquation (58a) Canuto (1992).
previous case, we shall not use a phenomenological expression for but rather derive an expression within the formalism%
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h
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which we approximate as
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The last term will be approximated as in so thatequation (51f )
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An alternative procedure to compute the last term in is by way of taking o ] o6 and considering thatequation (58b)
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Interchanging the indices i ] j and summing the results, one obtains the desired expression for %
ij
h , equation (53h).

16.3. T he Vector t
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where

A
i
4
TAo@

o
B2

u
i
A

L
Lx

j
(ou

j
A)
U

(59d)

B
i
4
T1

o
D
Dt

(o@2u
i
A)
U

. (59e)

If we further introduce the variable
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where the di†usion term is
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After some algebra, we obtain without approximations,
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which we further rewrite as
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The pressure-density covariance correlation
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The variable p was deÐned in and its equation is given below. By adopting the same weequation (47d) approximation (50e),
write the di†usion term as
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The corresponding incompressible result is equation (55c) of In conclusion, sinceCanuto (1992).
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16.4. T he Scalar j 4 So@3T \ o6 3p
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where !4 So@2To6 ~2 is obtained as the solution of equation (33i).

17. CONCLUSIONS

The model presented here is an attempt to describe compressible, time-dependent, nonlocal turbulent convection in the
presence of large-scale Ñows and arbitrary stratiÐcation and radiative forcing. Before this work, compressible turbulence was
treated with numerical techniques such as DNS, direct numerical simulations & Pouquet et al.(Passot 1987 ; Lee 1992 ;

et al. Thompson, & Pollak et al. et al. and LES, largeCambon 1992 ; Lele 1994 ; Cabot, 1995 ; Huang 1995 ; Muthsam 1995),
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eddy simulations Toomre, & Massaguer & Nordlund & SoÐa & Mullan(Hurburt, 1986 ; Stein 1989 ; Chan 1989 ; Hossain
et al. Hussaini, & Speziale Roxburgh, & Chan and with closure models.1991 ; Cattaneo 1991 ; Erlebacher, 1992 ; Singh, 1994)

As for the latter, an attempt was made to apply the DIA two-point closure model to compressible turbulence (Hartke,
Canuto, & Alonso while the one-point closure model was applied in (Rubesin & VanOsdol1988), 1989, 1990 ; Taulbee 1991 ;

& Sarkar Sarkar et al. Xiong et al. TheSpeziale 1991 ; Sarkar 1992 ; 1993, 1989 ; 1989, 1997 ; Yoshizawa 1995 ; Rudiger 1996).
two-point closure approach gives rise to a rather complex set of equations, while the Reynolds stress models su†er from a
great many phenomenological inputs that are difficult to assess. To improve the situation, we have developed a self-consistent
formalism that does not make use of phenomenological relations. Only one assumption is made : the Ñuctuations p@, o@, and
oT A obey a polytropic relation, and that introduces a free parameter, the polytropic index m. The major emphasis of previous
work was on the treatment of the radiative Ðeld, while several turbulence higher order statistics were treated(Xiong 1997)
approximately. Here, the emphasis has been on the treatment of turbulence.

The author would like to thank B. Datta for carefully reading the manuscript.

APPENDIX

A1. ENTHALPY (CONVECTIVE) FLUX : H
i
\ c

p
o6 ~1ou

i
A T A

o6
AD
Dt

H
i
] c

p
L

Lx
j
H

ij

B
\ c

p
o6 R

ij
b
j
[ o6 H

j
u8
i,j [ c

p
H

ij

C
o6 ,j ]

A m
c
p
T3
B
p6 ,j
D

[ c
p
[go6 "

i
T A ] %

i
h]

] n
ijk

d
jk

] u
i
A

Dp6
Dt

] u
i
A

Dp@
Dt

[ u
i
A F

j,jr , (1a)

b
i
4 [ LT3

Lx
i
] g

c
p

"
i
, "

i
\ H

p
(p6 )~1 Lp6

Lx
i
, H

p
\ p6 (go6 )~1 , (1b)

T A \ [ 2mc
p
(c[ 1)c

s
~2( , (1c)

o6 %
i
h \ (2nm)~1cT3 c

s
~2 L

Lx
i
p@2 , (1d)

1
2

Dp@2
Dt

\ p@2'[ n
c

c
s
2
C L
Lx

i
o6 (p@u

i
A] nm2p6 T3 ~2(

i
)[ 1

2
o6 (%

ii
] mT3 ~1%

ii
h )
D

, (1e)

'4 c
s
~2 D

Dt
c
s
2[ u8

k,k , (1f )

u
i
A

Dp@
Dt

\ n
c

c
s
2('u

i
A o@ [ B

i
) , (1g)

B
i
\ o6
CD
Dt

u
i
A] u8

i,k u
k
A [ (2np6 o6 )~1 L

Lx
i
p@2
D

, (1h)

u
i
A \ [m(c[ 1)c

s
~2H

i
, o@u

i
A \ m(c[ 1)o6 c

s
~2H

i
, p@u

i
A \ nm(1 [ c~1)o6 H

i
, (1i)

o6 ~1n
ijk

\ nmc
p
(1[ c~1)

A
o6 ~1 Lo6

Lx
k
H

ij
] R

ij
LT1 A
Lx

k

B
. (1j)

%
ij
h 4 n

ij
h [ n

ji
h , (2a)

n
ij
h \ nm(1 [ c~1)c

p
o6 (o6 ~1o6 ,j (i

] 12(
i,j [ (u6

i,jA ) , (2b)

%
ij
4 "

ij
] "

ji
(3a)

D
Dt

"
ij
\ '"

ij
[ u8

i,k "
kj

] u
i
A p@

L'
Lx

j
[ n

c
o6
AD
Dt

u
i
A ] u8

i,k uk
A
B L

Lx
j
c
s
2] 1

2
c
s
2o6 ~1

A 1
nH

p
"

i
a
j
[ La

i
Lx

j

B
, (3b)

a
i
4 c

s
~2 L

Lx
i
p@2 . (3c)



850 CANUTO Vol. 482

A2. TEMPERATURE VARIANCE : t4 1
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A6. LARGE-SCALE VELOCITY FIELD : u8
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